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Background

* Ice algae inhabit the bottommost centimeters of the sea ice,
known as the skeletal layer, at the ice-water interface

 This habitat provides access to the nutrients in the water
column below and light from above for photosynthesis

* Ice algae represent an important component of the Arctic
marine ecosystem, providing a springtime pulse of primary

| production when other sources are at a minimum, however,

- ] climate induced change in ice cover is expected to greatly

e affect their role (Leu et al., 2015)

S Objectives

- = 1. Investigate the influence of sub-ice current velocities on sea
=7 ice thickness across the tidal strait

=== | 2. Examine how the current gradient influences the nutrient flux

e~ to ice algal communities in relation to the influence on nutrient
-2 access/ocean-ice heat flux
i': - | 3. Examine whether gradients in ice algal taxonomy and
Paa ™ photophysiology exist along the tidal strait gradient
TG investigated in objective 1
e
.
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Figure 1. Location of sample sites in Dease Strait, NU.

=~ | * Fieldwork executed during the spring bloom in Dease Strait, NU
oA from 27 April to 20 May, 2016 during ICE-CAMPS (Fig. 1)

« Sea ice and water column samples were collected under thin
snow cover (< 5 cm) at six sites (Fig. 1)

* Two ice-tethered ADCP’s were used to determine current
velocities at the ice-water interface (just below the sea ice) over
a 48 hr period

» Variables analyzed: current velocities, snow depth, ice thickness,
chlorophyll a (via fluorescence), nutrients, particulate organic
carbon/nitrogen (POC/PON), and taxonomy

UNIVERSITY
of MANITOBA

Q, &

"}\\ Q ) %
onC® A
Arctic 56" < _ §

Particulate organic carbon
decreased away from the tidal
strait (Fig. 2d)
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POC:chlorophyll a ratio was $
lowest at the second site (Fig. 2f)

POC:Chl a (mg:mg)
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. 5 and decreased westward (Fig. 2e)
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concentration and the ratio of particulate organic carbon to chl a (f).
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Figure 2. Current velocities (a) over a 48 hr period and snow and ice
thickness (b) at the six sample sites. Bottom-ice taxonomic composition (c),
average particulate organic carbon concentration (d), chlorophyll a (chl a) (e)
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Nitrate + Nitrite

Results

» Positive relationships of phosphate and silicate vs. chl a and no

relationship with nitrate plus nitrite
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Figure 4. Nitrate (a), silicate (b), and phosphate (c) concentrations versus
chlorophyll a concentrations in bottom ice for all samples collected.

Discussion

« Stronger currents are associated with decreased ice thickness and
greater nutrient access, leading to enhanced ice algal chl a with

evidence of less nutrient stress

* Positive relationships of phosphate and silicate concentration vs. chl a
and no relationship with nitrate plus nitrite - potential nitrogen limitation

* An increase In chl a, currents and pennate diatoms with decreased
POC:.chl a suggests less nutrient stress while an increase in POC,
POC:chl a ratio, and centric diatoms suggests potential nitrogen

limitation (Campbell et al., 2017)

There are three mechanisms of nutrient supply that potentially explain the
positive influence of sub-ice current velocities on sea ice algae in this study:

1. Water column mixing — greater mixing

from depth to the ice bottom

2. Ocean-ice molecular diffusion — smaller viscous layer enhances a greater

exchange of nutrients into the skeletal

layer

3. Within ice convection — nutrients penetrate further into the skeletal layer
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Figure 5. Schematic of the ocean-ice nutrient flux mechanisms.

Significance

Tidal currents enhance nutrient supply to sea ice algae, making areas like
tidal straits with greater sub-velocities potential biological hotspots.
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