

Contrasted East-West sedimentary fluxes along the Lomonosov Ridge

(Arctic Ocean) during the late Quaternary

Cynthia Le Duc¹, Anne de Vernal¹, Claude Hillaire-Marcel¹, Bassam Ghaleb¹, Ruediger Stein²

¹Geotop Research Centre, Université du Québec à Montréal, Canada ² Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany **Contact:** vegacyn@hotmail.com

Giant box corer (GKG)

Multi-corer (MUC)

023-2: 86° 37.86' N-44° 52.45' W, 2439 m

055-1: 85° 41.47' N-148° 59.47' E, **730.7 m**

030-3: 88° 39.39' N-61° 25.55' W, 1277.8 m **070-3:** 83° 48.18' N-146° 7.04' E, **1340.2 m** 079-3: 83° 12.09' N-141° 22.54' E, 1358 m

099-4: 81° 25.50' N-142° 14.33' E, **741.2 m**

PS87 stations sampled

Arctic Sea Ice Minimum in September 2014

Arctic Sea Ice Maximum in March 2014

The Lomonosov Ridge is an underwater ridge of continental crust that stretches East-West over 1800 km in the center of the Arctic, from the Laptev-East Siberian seas occupied presently by annually renewed sea ice cover to Northern Greenland characterized by multi-year perennial sea ice. It separates the Eurasian basin from the Canadian basin and is under the influence of the Beaufort Gyre and the Transpolar drift (TPD).

Introduction

A high resolution analysis of 6 cores raised during the Polarstern expedition PS87 in 2014 was undertaken with the objective to characterize and quantify sediment composition and fluxes over the ridge during the late Quaternary.

Methods

Centimetre-thick samples were collected at 1 cm intervals. Measurements include AMS-¹⁴C ages (on the 150-250 µm fraction, using planktic foraminifer assemblages of Neogloboquadrina pachyderma), U-series by alpha/gamma counting and resin chromatography, bulk grain size, x-ray diffraction mineralogy and geochemical properties (total, organic/inorganic carbon, δ^{13} C, N).

Results

AMS-¹⁴C

U-series

Mineralogy

Grain size (0.02-2800 μm)

Geochemistry

Outcome

- Results highlight areas with very low sedimentary fluxes westward (~4 mm.ka⁻¹ year) to relatively high sedimentation rate eastward (~100 mm.ka⁻¹ year), illustrating a 2 orders of magnitude difference in ice-rafting deposition rates.
- Whereas the excess ²¹⁰Pb distribution downcore is controlled by bioturbation and diffusion down to layers dated of several tens of ka by ¹⁴C, ²²⁶Ra distribution is governed by its diffusion in the upper ~7 cm of cores (see green box above), below, it is supported by ²³⁰Th. The decay sequence ²²⁶Ra-²¹⁰Pb cannot therefore be used for the calculation of recent sedimentation rates. AMS ¹⁴C provide here the most reliable radiometric ages.
- High detrital dolomite-rich carbonate contents from the Canadian Arctic and Beaufort characterize the westernmost section of the Ridge. This area also depicts a sedimentary gap during the LGM.
- The eastern sector directly under TPD supplies experiences average sedimentation rates orders of magnitude, higher than those of the western sector, more frequently overlain by perennial sea-ice.

REFERENCES

NOT, C. et al. "210Pb-226Ra-230Th systematics in very low sedimentation rate sediments from the Mendeleev Ridge (Arctic Ocean) This article is one of a series of papers published in this Special Issue on the theme Polar Climate Stability Network.

GEOTOP Publication 2008-0031." Canadian Journal of Earth Sciences 45.11 (2008): 1207-1219. /"Time constraints from 230 Th and 231 Pa data in late Quaternary, low sedimentation rate sequences from the Arctic Ocean: an example from the northern

Mendeleev Ridge." Quaternary Science Reviews 29.25 (2010): 3665-3675. /"Enhanced sea-ice export from the Arctic during the Younger Dryas. Nat. Commun. 3, 647, http." dx. doi. org/10.1038/ncomms1658 (2012).

Satellite imagery "Sea Ice Minimum and Maximum Extents, 1979 to Present", courtesy of NSIDC-NASA-Terrametrics

STEIN, R. (Ed.), 2015. The Expedition PS87 of the Research Vessel Polarstern to the Arctic Ocean in 2014, Reports on Polar and Marine 210Pb-226Ra-230Th

systematics in very low sedimentation rate sediments from the Mendeleev Ridge (Arctic Ocean), Canadian Journal Research 688, Bremerhaven,

Alfred Wegener Institute for Polar and Marine Research, 273 pp