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Preliminary results
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Introction

This project focuses on scree slope development during the Holocene
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Topography

| The scree slope is mostly concave with a mean angle of 22,6°, ranging between 27° and 19°. However, the southern part of the talus
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period on Hudson Bay cuestas in Nunavik. Located near the Inuit
. | community of Umiujag and at the edge of Tursujuq National Park, the

shows a complex topography ; the upper slope is linear and the lower slope is more chaotic (Figure 4). The concavity of the profiles

| shows that there is debris remobilization on the talus., whereas a virtualy traight profile indicates that the repose angle of particles |

' study site includes hillsides in the Tasiapik Valley (Figure 1). Rock falls

| have been common occurences since the last deglaciation, about 7600 has almost been reached.

years ago. Screes have formed at the base of the rock walls (Figure 2). |

| Nowadays, slope processes represent a potential danger for local people - Debris size and petrography
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To reach this goal, our fieldwork focussed on various parameters such as ~ _ el e capacity because of their size, making. them T — = — —
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the height of the rock wall, the lithology and size of the debris on the | Figure 4 : Talus topography at the north, median and south profiles, and spatial distribution of . o :
scree, and the topography and geological setting of the talus. The [&. | theupperand lower slope, and the forested zone. 'QpRgraphy «esthedERarICude. U0\ 10

more likely to reach the lower slope. The chaotic | ‘

ure work =

‘| At this moment, risk exposure is difficult to demonstrate as we do not

-

| the size of the boulders and the large crevasses [¢

e
—
= Vegetation cover

topography of the talus was surveyed along many transects using a
differential GPS (Figure 3).

know the dynamic of the slope on a short term period. However, basalt

e

between them, as shown on figure 6a. : .
& boulders may represent the most serious hazard because they are likely |

AN R Sy OUpper slope MLower slope to be transported over longer distances than sedimentary rock debris.

é; The vegetation covering the debris surface has been 5 © " - Basalt fall events seem to be rarer than sedimentary rock fall events, but ;:
described and its coverage estimated. A thin strip of ~ ~ '\‘ far more important in terms of debris volume.
herbaceous plants and shrubs covers the upper slope - ﬂ I Future work will focus on the triggering causes of the slope processes [i*
beneath the rock wall. Lichens and mosses are very 2 throughout the valley. Slopes geomorphology will be used to study |
abundant from the top to the base of the talus ; the mean §1 % a3 VEGDEET ;‘;:Sﬂ” ) EfTﬁEEEJ ‘BE;TE”BJH'\: 3 | gravity processes and the geomorphic agents that control the rock fall
estimated coverage percentage on the debris reaches 60%. > % dynamic, and activity models will be applied to the slope evolution in the
The percentage of debris coverage decreases to 30% at the 2 - region. Para- and periglacial agents are most probable causes that will be

prominent debris cone that has formed under a recent | further studied in this project (Figure 7). Additional taluses have been
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Figure 2 : Top view of the studied talus slope (S. Veilleux,
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! notch in the rock wall at the median profile. The coverage

““ ‘ A investigated during summer 2017 and we are currently analyzing the
| data.

H‘ percentage increases near the base, reaching 42% due to

- Upper slope Lower slope
B | debris remobilization (Figure 5). W—/ HOP;/

" | The vegetation is more diversified near the bottom of the
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% | trees show evidences of collision with a debris (Figure 6b). : _ _ e : : - |z |Acknoledgements
Figure 5 : Rock fall dynamic and debris remobilization, according to the lithologic

fractions of the debris and the vegetation coverage.

| talus, as herbaceous plants, shrubs and even black spruces

are covering the boulders (Figure 6a). Boulders are partially

[ .
{ or completely covered under a layer of mosses and lichens

|
.

Sedimentary
73%

on the ground in the forested area. Some of the spruce
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Figure 3: DGPS survey and debris sampling on a talus slope
~ (b. Seemundsson, 2017). \
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